Texture of Biological Apatite Crystallites and the Related Mechanical Function in Regenerated and Pathological Hard Tissues

Takayoshi Nakano¹, Takuya Ishimoto¹, Yukichi Umakoshi¹ and Yasuhiko Tabata²

¹ Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
² Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan

Abstract: Preferential alignment of biological apatite (BAp) c-axis and the related collagen (Col) fibril was proved to be a dominant parameter showing bone quality for understanding nano-scale microstructure and the related mechanical function in addition to bone mineral density (BMD). We clarified the correlations between in vivo stress distribution and the BAp/Col alignment and between the BAp/Col alignment and mechanical function, especially Young’s modulus, in original intact and regenerative hard tissues. The mutual relationships are predicted to be closely related to the function of osteocyte which can sense the surrounding stress field. The BAp orientation was finally concluded to be one of the most important indices to evaluate in vivo stress distribution, nano-scale microstructure and the related mechanical function, regenerative process of the regenerated bone and progress of bone diseases.

Keywords: biological apatite (BAp), collagen (Col), preferential alignment, bone mineral density (BMD), Young’s modulus, microbeam X-ray diffraction, nano-indentation, bone regeneration

Introduction

The bone mechanical function depends on both bone quantity and quality corresponding dominantly to bone mineral density (BMD: density of biological apatite) and the integrity of the internal architecture, respectively. BMD is correlated with bone strength, but accounting only for 60-70% of the variance in ultimate strength of bone tissue. Thus, new parameters representing the bone quality have been investigated so far.

Bone has a well organized microstructure in nano-scale level and is composed of mineral biological apatite (BAp) and collagen (Col) fibril, providing reinforcement and pliability, respectively. Since BAp crystallizes in an anisotropic hexagonal lattice, mechanical properties of a BAp crystal should depend on the crystal orientation. Moreover, the BAp c-axis accords with the extended direction of collagen fibrils. Thus, preferential alignment of the BAp c-axis along the extended collagen fibrils in hard tissues must be closely related to the mechanical function of bone and is also utilized as a possible index for evaluating bone quality.

In this article, we clarified correlations among in vivo external stress distribution, anisotropy of the BAp/Col alignment and the mechanical function evaluated by bone shape, BAp texture and Young’s modulus, respectively, in the original intact, regenerated and pathological hard tissues.

Materials and Methods

Bone samples under the below conditions were prepared: (1) mature intact cortical bones such as a rabbit ulna, a rabbit skull bone, a monkey dentulous mandible with a tooth, a monkey vertebra (lumber 4: L4), (2) regenerated bones from the defected rabbit ulna model healed naturally. The specimens were immersed in a 10% formalin neutral-buffered solution to avoid denaturation of organic matrix. X-ray diffraction analysis for crystallographic approach to the constituent BAp crystallites was performed using the microbeam X-ray diffractometer system (M18XHF22-SR, Mac Science or D8 DISCOVER with GADDS, Bruker AXS). The incident beam was focused onto a beam spot 50mm or 100mm in diameter by a metal collimeter. The detailed conditions for the appropriate analysis of preferential alignment of the BAp c-axis should be referred in our previous paper. BMD was measured by the peripheral quantitative computed tomography (pQCT) (XCT Research SA+; Stratec Medizintechnik, GmbH). Bone tissue was detected as CT values more than 267 mg/cm³. Young’s modulus was measured by nano-indentation tester (ENT-1100a, Elionix) at a loading/unloading strain rate of 400mN/s. Correlations among the analyzed parameters were assessed by Pearson’s correlation coefficient. For statistical analysis, the Student’s t-test was used and differences were considered to be significant at P<0.05.

Results and Discussion

Original intact bones exhibit unique texture of the BAp crystallites relating to the arrangement of Col fibrils. Preferential alignment of anisotropic BAp crystallites in typical cortical bones, for example, changes depending on the bone shape and stress distribution in vivo. Figure 1 summarizes variations in the relative diffraction intensity ratio of the (002) diffraction peak to the (310) peak with different directions, A, B and C for the ulna, skull bone, dentulous mandible and lumber vertebra. It is clear that the preferential alignment of BAp c-axis corresponds to the in vivo stress distribution. The BAp c-axis tends to orientate along the loading stress direction in the original bones.

In conclusion, in vivo stress distribution produces the preferential alignment of BAp/Col, resulting in the change in Young’s modulus. Degree of anisotropy in macroscopic external stress field is diminished inside of bones due to the preferential alignment of BAp/Col and subsequent increase in Young’s modulus. This may mean that osteocyte can sense three dimensional stress field, and prefers isotropic stress field to anisotropic stress field.
International symposium of Maxillofacial & Oral Regenerative Biology in Okayama 2005

Acknowledgements
This work was supported by funds from the Ministry of Education, Culture, Sports, Science and Technology of Japan and from New Energy and Industrial Technology Development Organization (NEDO) of Japan.

References

Fig. 1 Preferential alignment of the BAp c-axis in typical mature intact cortical bones.

Fig. 2 Correlations between BMD and BAp c-axis alignment in regenerated ulnae along the longitudinal direction.