

新1,河野哲朗1,戸田みゆき2,玉村 亮1,寒河江登志朗1,岡田裕之1 渡辺 1日本大学松戸歯学部 組織学講座

> 2日本大学大学院松戸歯学研究科 解剖 · 組織 · 発生学専攻

Introduction

本研究は、ヒトエナメル質生体アパタイト結晶における構成要素の個体差を明らかにするために、ヒトエナメル質を焼成し顕微 フーリエ変換赤外分光法(micro-FTIR)を用いて分析を行った。焼成処理前にmicro-FTIRで解析したものをcontrolとし、焼成処理後 の解析結果と比較した。本研究の目的は、生体アパタイトが、良結晶性の合成・鉱物アパタイトと比較して、結晶格子内のイオン 置換に富み、結晶格子不整が多く、低結晶性であることから、これらの違いが個体ごとにどのような影響を及ぼすのかを明らかに することである。

Materials and Methods

10本のヒト第三大臼歯を長軸方向に約0.5 mmの厚さに薄切した後, エナメ micro-FTIR ル質のみを切り出し、めのう乳鉢にて粉末とした。理学電気製DTA・TG同時 分析装置を用いて,昇温速度10 ℃/min,955 ℃にて焼成処理を行った。micro-FTIR測定は焼成前後で行い、その中で典型的なパターンを示したものを報告 する。本研究は日本大学松戸歯学部倫理委員会の承認を得て行った。 (承認番号: EC 17-015号)

製品名:Survey IR® 株式会社エス・ティ・ジャパン東京 サーモフィッシャーサイエンティフィック株式会社 /神奈川 赤外測定:反射法 検出器:DLaTGS/KBr窓 アパーチャー:100 µm

eSpotTMソフトウェア使用

Results and Discussion

1) micro-FTIRパターン

2) 二次微分曲線

3) micro-FTIRピーク値

					Sample A		Sample B		Sample C		Sample D	
A	黒:control 赤:焼成後	$A^{0.04}$ 黒:control	赤:焼成後	Chemical components	Control	Heating	Control	Heating	Control	Heating	Control	Heating
	MA			$PO_4^{3-}v_2$	467	471	474	471	463	471	471	471
Š		s		\mathbf{DO}^{3-}	559	559	559	559	559	559	559	559
Ab		Ab		$PO_4 V_4$	602	598	602	598	602	598	602	598
~		-0.04 -		$CO_3^{2-}v_2$	876	876	876	876	876	876	876	876
400		4000 3000 wave	2000 1000 e number (cm ⁻¹)	$PO_4^{3-}v_1$	957	960	960	960	960	960	960	960
	$\begin{array}{cccc} 3000 & 2000 & 1000 \\ & wave number (cm^{-1}) \end{array}$					984		984		984		984
в	Λ	$\mathbf{B}^{0.02}$			1007	1003	1011	1007	1011	1007	1011	1003
		D		$PO_4^{3-}v_3$		1018		1018		1018		1018
~ S		O - marting where the for the source of the	man Aparthe grap a man M Man M M Marsh			1130		1126		1130		1126
Ab		Abs		-2^{-1}	1412	1412	1412	1412	1412	1412	1412	1412
-	-0.02		$CO_3^2 v_3$	1450	1446	1450	1454	1450	1454	1450	1446	
				$CO_{3}^{2} v_{4}$	1547	1550	1547	1550	1547	1547	1547	1550
4000	3000 2000 1000 4000 wave number (cm ⁻¹)	4000 3000 wave) 3000 2000 1000 wave number (cm ⁻¹)	H_2O	1982	1982	1982	1982	1982	1982	1979	1982
C	Λ	C				3494		3494		3494		3494
		0.03		OH	3572	3572	3572	3572	3572	3572	3572	3572

サンプルA~Dにおいて、焼成前の吸収バンドは多くの報告にある 一般的なエナメル質のパターンを示したが、詳細な吸収バンドの ピーク値には違いを認めた。一方、焼成後の吸収バンドは焼成前の 吸収バンドにはないバンドピークを複数認め、明らかにアパタイト 結晶以外の組成物が出現した。更に、二次微分曲線においてP-O領域 の吸収バンドについて焼成前後を比較すると、複数のバンドピーク でずれが生じていた。この結果から、ヒトエナメル質生体アパタイ ト結晶では構成要素に個体差があり、その組成変動は加熱処理に よって増幅されていることが示唆された。本研究では極端なケース を提示したが、明らかに個体ごとのエナメル質に特徴的な違いがあ り、これは、エナメル質の多様性を示していると考えられる。今後 結晶学的観点から、より正確な違いを明らかにするためにmicro-XRD を用いて、分析していく必要がある。

References

- Camila CAL, Pedro HJOL, Veridiana RN, et al. Fourier transform infrared spectroscopy (FTIR) application chemical characterization of enamel, dentin and bone. Applied Spectroscopy Reviews 53: 747-769, 2018.
- ・高木亨,田上順次,中村聡:エナメル質の基質代謝と石灰化形成, Journal of Hard Tissue Biology 6: 74-80, 1997.
- ・寒河江登志朗,谷中真一,渡辺浩,他:象牙質の焼成による多孔質と緻密質のリン酸カルシウム結晶集合体の形成, 日大口腔科学 22: 45-51, 1996.

はない。

